New Constraint Qualifications for Optimization Problems in Banach Spaces Based on Asymptotic KKT Conditions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constraint Qualifications and KKT Conditions for Bilevel Programming Problems

In this paper we consider the bilevel programming problem (BLPP), which is a sequence of two optimization problems where the constraint region of the upper-level problem is determined implicitly by the solution set to the lower-level problem. We extend well-known constraint qualifications for nonlinear programming problems such as the Abadie constraint qualification, the Kuhn-Tucker constraint ...

متن کامل

Mangasarian-Fromovitz and Zangwill Conditions For Non-Smooth Infinite Optimization problems in Banach Spaces

In this paper we study optimization problems with infinite many inequality constraints on a Banach space where the objective function and the binding constraints are Lipschitz near the optimal solution. Necessary optimality conditions and constraint qualifications in terms of Michel-Penot subdifferential are given.

متن کامل

On constraint qualifications in directionally differentiable multiobjective optimization problems

We consider a multiobjective optimization problem with a feasible set defined by inequality and equality constraints such that all functions are, at least, Dini differentiable (in some cases, Hadamard differentiable and sometimes, quasiconvex). Several constraint qualifications are given in such a way that generalize both the qualifications introduced by Maeda and the classical ones, when the f...

متن کامل

On Basic Constraint Qualifications for Infinite System of Convex Inequalities in Banach Spaces

The BCQ and the Abadie CQ for infinite systems of convex inequalities in Banach spaces are characterized in terms of the upper semi-continuity of the convex cones generated by the subdifferentials of active convex functions. Some relationships with other constraint qualifications such as the CPLV and the Slate condition are also studied. Applications in best approximation theory are provided.

متن کامل

Strict Constraint Qualifications and Sequential Optimality Conditions for Constrained Optimization

Sequential optimality conditions for constrained optimization are necessarily satisfied by local minimizers, independently of the fulfillment of constraint qualifications. These conditions support the employment of different stopping criteria for practical optimization algorithms. On the other hand, when an appropriate strict constraint qualification associated with some sequential optimality c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Optimization

سال: 2020

ISSN: 1052-6234,1095-7189

DOI: 10.1137/19m1306804